Neuromorphic Hardware Learns to Learn

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding a roadmap to achieve large neuromorphic hardware systems

Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are reaching physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Toward this end, the authors provide a glimpse at what the technology evolution...

متن کامل

Methods for applying the Neural Engineering Framework to neuromorphic hardware

We review our current software tools and theoretical methods for applying the Neural Engineering Framework to state-of-the-art neuromorphic hardware. These methods can be used to implement linear and nonlinear dynamical systems that exploit axonal transmission time-delays, and to fully account for nonideal mixed-analog-digital synapses that exhibit higher-order dynamics with heterogeneous time-...

متن کامل

Using Games to Embody Spiking Neural Networks for Neuromorphic Hardware

Adding value to action-selection through reinforcement-learning provides a mechanism for modifying future decisions of real and artificial entities. This behavioral-level modulation is vital for performing in complex and dynamic environments. In this paper we focus on three classes of biologically inspired feed-forward spiking neural networks capable of action-selection via reinforcement-learni...

متن کامل

Training Spiking Deep Networks for Neuromorphic Hardware

We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our method for transforming deep artificial neural networks into spiking networks is scalable and works with a wide range of neural nonlinearities. We ac...

متن کامل

Neuromorphic Hardware As Database Co-Processors

Today’s databases excel at processing data using fairly simple operators but are not efficient at executing operators which include pattern matching, speech recognition or other cognitive tasks. The only way to use such operators in data processing today is to simulate spiking neural networks. Neuromorphic hardware is supposed to become ubiquitous in complementing traditional computational infr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Neuroscience

سال: 2019

ISSN: 1662-453X

DOI: 10.3389/fnins.2019.00483